Introduction

Photo of Prof. Tremaine

Peter Tremaine

Professor of Chemistry, University of Guelph

UNENE Research Chair

Fellow of the Chemical Institute of Canada, FCIC

Honorary Fellow, the International Association of Water and Steam (IAPWS)

tremaine@uoguelph.ca

+1 519-824-4120 x56076

Research Themes

  • Physical chemistry of ions and organic solutes in very high temperature water.
  • CANDU Nuclear reactor chemistry.
  • Thermal power generation, carbon capture, and hydrogen co-generation.
  • Origins of Life / Prebiotic Chemistry: Amino acids and nucleic acids under deep-ocean hydrothermal vent conditions.

Current Student / Employment Opportunities

We have several openings available for people with strong backgrounds in physical chemistry, analytical chemistry or chemical physics and a solid record of academic performance.  Experimental geochemistry or chemical engineering may also be considered.  MSc / PhD / Postdoc, and Lab Operations.

Please click here to view our current opportunities.

Overview of the Hydrothermal Chemistry Group

Summary of Research Interests

Many geological and industrial processes take place at conditions far beyond the range of conventional room temperature measurements.  The objective of research in the hydrothermal chemistry group is to develop the knowledge base and theoretical understanding needed to describe the behaviour of aqueous systems at extremes of temperature and pressure, and to apply these results to fundamental problems encountered in electrical power stations, nuclear reactors, geothermal ore bodies, deep-ocean hydrothermal vents, and carbon capture/sequestration.

Sensitive flow calorimeters, densitometers and AC conductance cells, constructed of inert materials to withstand the corrosive conditions, are used to determine the thermodynamic properties of simple electrolytes and organic molecules in liquid water at temperatures up to 400 deg C and pressures as high as 300 atm, to examine the effects of ionic charge and organic functional groups under conditions approaching the critical point of water. The form of the chemical species, and their equilibrium constants at high temperature and pressure, are being determined by conductance methods, and by UV-visible and Raman spectroscopy in flow systems with sapphire windows or in diamond anvil cells.  Spectroscopic, heat capacity and volumetric studies on metal complexes with ammonia, halides and chelating agents provide data and models to describe the temperature dependence of transition metal complexation and chelation equilibria.  Some of our MSc and PhD projects can be co-op or international exchange.

The novelty in the work lies in the very extreme conditions being studied, the potential for identifying unusual effects, and the need to develop specialized instrumental techniques to obtain quantitative data for multi-component aqueous systems under these very aggressive conditions.

"Black smokers" at hydrothermal ridges in the deep ocean
“Black smokers” at hydrothermal ridges in the deep ocean: an example of a natural hydrothermal system. Photo credit: Ropos.com.
Dr. Conrad / Lepreau
Co-op PhD Student Jacy Conrad job-shadowing at the Point Lepreau Nuclear Generating Station during her 1-year work term at Chalk River Laboratories. CNL was honoured with the 2018 Co-op Employer of the Year Award by the University of Guelph for the experience provided to Dr. Conrad. She is now the Russell Heath Postdoctoral Fellow at US DOE Idaho Falls National Laboratory.